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ABSTRACT
In this paper, we make a case of a reflective architecture for
cellular systems as means to support flexibility and evolv-
ability of the existing cellular network infrastructure to deal
with a new generation of adaptive environments and ap-
plications. Existing systems are event/request driven and
mechanisms to enable seamless adaptivity are limited. We
show how the various proposed (but largely unimplemented)
dynamic adaptation techniques for existing networks (GSM
/ CDMA) can be incorporated into a Reflective Cellular Ar-
chitecture (RCA). Self representation in the RCA enables
a new class of proactive and prediction-based information
driven algorithms. We illustrate how the RCA enables novel
techniques for observation and management of information
in cellular networks, use the observed information in the de-
sign of effective coarse and fine grained location prediction
meta-level services. We further illustrate how such meta-
level services can be used to enhance the capabilities of to-
day’s cellular networks ranging from better radio resource
management of the cellular infrastructure and customized
alerting in disasters to effective utilization of other coexist-
ing networks.

Keywords
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tion

1. INTRODUCTION
According to a recent estimate, there are currently over

5 billion mobile phone subscribers around the world. The
popularity of cellular phones has clearly established the will-
ingness of people to carry with them a versatile device, capa-
ble of communication, as well as computation and storage.
This situation is being exploited by the market to create a
multitude of information services aimed at improving end-
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user experience and/or offering functionalities that would
not be possible otherwise. Examples include location based
services, capture and delivery of multimedia content, per-
sonal sensing and health monitoring, the ability to commu-
nicate with smart spaces, connecting with home sensors for
surveillance, and alerts which inform the owner of an abnor-
mal event via short-message-services (SMS) sent to his cell
phone.

Given the popularity and pervasiveness of cellular tech-
nology, we believe that it can play a unique and vital role
for large scale information centric applications that collect,
analyze, share and disseminate information in a variety of
situations. This enables a new view of the cellular infras-
tructure as a network of sensors that collects and provides
information about the execution environment; raw informa-
tion thus obtained from individual users can be used to cre-
ate a broader view of the current system both spatially and
temporally. The view promotes a new class of applications
that support information/data driven decision making that
utilizes the captured spatiotemporal data. For example, re-
source allocation in the network can be proactively adapted
to changing information about the needs of applications uti-
lizing the network instead of a reactive approach where users
and systems respond to degradations in service.

Today, cellular infrastructures are designed and deployed
in a somewhat rigid fashion based on expected usage sce-
narios. Once deployed, usage data is frequently collected to
determine if the deployment meets the usage requirements
and (if not) how the system can be adapted/modified to
meet the user needs. Such a design-deploy-analyze paradigm
is not well suited to support the changing needs of new re-
source intensive applications that expect consistent service
despite changing network and user conditions. The slow
turnaround times also do not scale to unpredictable and/or
extreme situations such as those that arise during a crisis. It
is no surprise that cellular services are amongst the first ones
to fail due to both traffic overload and physical infrastruc-
ture failures during such events since their current designs
are not conducive to dynamic adaptation of user applica-
tions or infrastructure services. What is required is a tran-
sition to design-develop-observe-adapt cycle, similar to that
proposed for network architectures [2], where conditions in-
ternal to network and system components are observed to
enable analysis and dynamic reconfiguration.

Through a detailed study of current adaptations in GSM
and CDMA networks, we argue that a reflective architec-



Figure 1: Overview of cellular infrastructure.

ture can not only provide a framework for incorporating
existing adaptive solutions, but can also enable novel adap-
tations and applications that can significantly expand the
scope and utility of the cellular infrastructure (Section 2).
In particular, we develop a meta-architectural model of cel-
lular systems and show that emerging applications may not
necessarily require restructuring the network and its com-
ponents, but a change in the way information is observed,
gathered and used. In Section 4, we develop a flexible loca-
tion management/prediction metalevel service using infor-
mation observed through our RCA framework and illustrate
concrete use cases of the developed metalevel service.

2. A META ARCHITECTURE FOR REFLEC-
TIVE CELLULAR ARCHITECTURE

Current cellular network technology is implemented using
two major standards - GSM and CDMA. Figure 1 shows
the basic components of GSM and CDMA based cellular
systems. Mobile hosts (MH) communicate with a base sta-
tion (BS); a base station controller (BSC) manages multiple
BS’s and connects them to other parts of the infrastruc-
ture. The base station subsystem (BSS) processes voice
calls from other mobile hosts or from other users on the
Public Switched Telephone Network (PSTN) through Mo-
bile Switch Centers (MSCs). In the GSM system, Serving
GPRS Support Nodes (SGSN) and Gateway GPRS Sup-
port Nodes (GGSN) help route the data packets from MSCs
to public data networks (e.g. Internet). In a CDMA net-
work, data packets are routed to public data networks by
MSC directly. In the traditional view of cellular systems,
network components (base stations, controllers etc.) cre-
ate and manage communication networks, allocate network
resources, and provide different cellular services to the end
users. Users on handsets are end-consumers of resources and
services obtained from the service provider.
In this paper, we propose Reflective Cellular Architec-

tures (RCA) - an adaptive way of structuring, managing
and using cellular networks by exploiting the notion of com-
putational reflection. Computational reflection [1] is an ac-
knowledged technique for dealing with dynamic reconfigura-
tion in adaptive environments where the system maintains
a causally-connected representation. This has been applied
in a variety of contexts including distributed multimedia,
programmable networks, component-based software devel-
opment, adaptively composable middleware [16, 11], grid
computing, peer-oriented networks and mobile distributed
systems. Past efforts in reflective network architectures dis-
cuss the utility of exposing implementation and state to net-
work architects for improved network services.
Reflective cellular architectures offer a much broader view
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Figure 2: Overview of a Reflective Cellular Archi-
tecture

of the cellular technology, beyond its traditional role of ac-
commodating user-centric devices. Rather than being sim-
ply conduits facilitating personal communication require-
ments, cellular technology can now be viewed as very large
and pervasive networks of devices capable of capturing (sens-
ing) and communicating a variety of information about the
state of the network and the devices immersed in the net-
work. In the resulting architecture, devices could gather, for
instance, the state of the radio network, state of the protocol
stacks, and nature of traffic and usage patterns at various
locations. Raw information gathered can be spatiotempo-
rally tagged, compacted and relayed over a possibly out of
band communication channel to a repository where the data
can reside persistently for others to utilize. This persistent
repository, which could be distributed physically, can be or-
ganized as a single coherent entity (database) that can be
queried over the cyber-infrastructure. Such a view offers
numerous advantages both from the perspective of the end-
user (with applications on handsets) as well as that of service
providers (infra-structure and service deployment).

The architecture of a RCA system (See Figure 2) shows
two well-defined levels: the functional level (also known as
the base level) that executes the functionality of the cellular
application (voice/data communication), and a meta-level
that observes and potentially customizes the base-level com-
munication. Realizing such a RCA system is not straightfor-
ward. Firstly, there is significant complexity associated with
the reification process (i.e. the capture and observation of
underlying base state). It requires the definition of a meta-
level architecture that clearly scopes out the observable pa-
rameters (configuration data) and its use in the adaptation
process (reconfiguration rules). Secondly, maintaining effi-
ciency and performance of data transport in the presence of
the additional modules for observation and adaptation is a
significant challenge. Our recent efforts in the area of reflec-
tive messaging have developed techniques for customized de-
livery of messages to end-users; however, in our experience,
performance optimizations require knowledge of the under-
lying context. Recent work in extensible router architec-
tures have indicated that software based packet scheduling
and forwarding is a viable approach for adapting communi-
cation, which is an encouraging sign. Thirdly, maintaining
observable state in a scalable manner for dynamic data in-
dicates that flexible data management must be a key com-



ponent of this architecture. The adaptive data management
technique for next generation cellular networks is a crucial
challenge. Finally, assimilating the reflective architecture
into existing cellular infrastructures in meaningful ways re-
quires a good understanding of how cellular networks work.
We believe that there are relatively simple ways to build
a RCA on top of existing cellular infrastructures to enable
reification/reflection; however, this requires a determination
of the points at which the network must be instrumented.
In our RCA system, reification is supported through the

use of base-level annotations, i.e. meta-data about base
components. The annotations include the followings - lo-
cation (if available), environmental sensing parameters, ap-
plication level delays (for diffserv), signal strengths, residual
energy levels, user mobility profiles (if predetermined) etc.
Annotations associated with base objects that capture de-
vice specific characteristics are accessible by the meta-level
runtime and meta-level services. If multiple meta-services
use annotations, synchronization may be needed. The de-
veloped architecture will support advanced introspection of
the annotations which may be used by the meta-services or
trigger events when annotations fall outside the expected
range.

3. FITTING EXISTING CELLULAR NET-
WORKS INTO RCA

Satisfying users’ communication request with high quality
has always been the main consideration when designing and
planning cellular systems. However, there exist many factors
that may affect users’ satisfaction of cellular services. Ex-
amples of such factors include the limited amount of radio
spectrum resource, the power/battery constraint of users’
devices, the interference between active users, etc. The value
and effect of these factors may vary in different network sit-
uations. Adaptively dealing with these factors can help cel-
lular systems provide better services; several specific adap-
tation mechanisms have been independently studied with-
out a larger view of the entire infrastructure. To illustrate
how information collection and exchange plays an impor-
tant role; we studied techniques for effective radio resource
management in both GSM and CDMA networks that aim
to provide enhanced network capacity under limited radio
spectrum resource.
In the GSM system, a given radio spectrum is divided into

a set of disjoint radio channels and these channels need to
be reused in different non-interfering cells within the channel
reuse distance. To satisfy a large number of user communica-
tion requests, channels need to be adaptively assigned to the
call requests as they occur and terminate. Dynamic Chan-
nel Allocation has been drawing intensive research attention
for over 30 years [10, 7]. The channel assignment process
is triggered by a call request from MH. Upon receiving a
call request, BS makes the decision of assigning a channel
to the call for temporary use. The decision parameters are
the channel usage of a cell, the number of call requests, co-
channel interference ratio (CIR), signal strength to MH and
etc. Based on the type of DCA schemas (centralized/cell-
based decentralized/handset-based decentralized), the set of
exchanged information between BS and MH is determined,
but generally location information and channel information
are exchanged.
In a CDMA system, all the users share the available radio

frequencies and use different orthogonal codes to send their
signals. Thus signals to/from one user can be noise to other
users; consequently, the signal strength and interference ra-
tio should be balanced among the users. The major adapta-
tion technique for CDMA networks is dynamic power control
[9, 12], although some techniques also implement code adap-
tation [12]. Specific channel parameters need to be collected
by BS’s or MH’s to optimize the transmission powers at MHs
and BSs so as to accommodate a large number of users while
ensuring acceptable noise levels. The operation of a CDMA
network supports increased flexibility in call admissions as
compared to the more rigid channel allocation techniques in
GSM. Communication requests from users can be accommo-
dated as long as noise levels are acceptable; however, it may
trigger reconfiguration of transmission parameters of devices
in the region. When the noise level reaches a threshold, the
call is dropped. Most dynamic power control schemes are it-
eration based, in which the transmission power of BS’s and
MH’s is periodically adjusted in the call duration. Thus,
more dynamic interaction between MH’s and BS’s is needed.

RCA provides a well-structured platform for all the above
adaptation techniques by guaranteeing the required infor-
mation/data collection and exchange. Thus, the existing
adaptations fit into the reflective architecture and can be
enhanced for increased performance by the new view. Fig-
ure 3 shows how the information collection and exchange
for GSM/CDMA handsets and base stations is supported
on RCA.

Some existing studies explore potential adaptation strate-
gies which use resources outside existing cellular environ-
ments. For example, the dynamic spectrum allocation (DSA)
scheme proposed in the OverDRiVE project [4, 6] tries to
share the radio spectrum across different radio access net-
works (RANs) (e.g. cellular, WLAN, analog TV). It allows
allocating only the amount of spectrum to a RAN that is
required to satisfy the short-term traffic load with a cer-
tain user satisfaction level in a given area. Thus, spectrum
utilization information and traffic conditions of different ra-
dio systems and their deployment are needed. Such out-of-
band information resides outside the current cellar networks.
RCA also enables intersystem information exchange, which
provides the ability to deploy DSA schemas effectively.

In our existing work [17], we made a case for using reflec-
tion in radio resource management. We designed an adap-
tive algorithm - Prediction Based Channel Allocation algo-
rithm (PBCA), which is a radio resource allocation algo-
rithm which solves a key issue in GSM network, Dynamic
Channel Allocation, using predicted location information.
In the PBCA, BS of a cell is able to pro-actively allocate
channel resource by estimating the channel request based
on the predicted location information in order to reduce the
ratio of dropping call request within hotspot cells. That is,
if a BS predicts that it will need more channels than its own
channel limit after a specific lookahead time, it pro-actively
borrows available channels from neighboring cells before re-
ceiving surge of call requests. According to this, the PBCA
can spread the load of surge of traffic among neighboring
cells.

In the RCA, the role of the PBCA is adjusting the channel
occupancy based on the predicted user location, the current
channel occupancy and the current call dropping rate. The
PBCA can be implemented as a meta-level service, such as
the radio resource management module of the cellular net-
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Figure 3: Information flow between handsets and base stations for GSM and CDMA

working service in Figure 2. The PBCA meta-level service
provides meta level functions such as assignChannel() and
releaseChannel() to update the channel occupancy. The cur-
rent channel occupancy and the call dropping rate, which are
primitive base-level annotations, can be easily obtained by
using getChannelOccupancy() meta-level function of the cel-
lular networking service. However, to get the predicted user
location information, we need another meta-level service
supporting the location information management, which is
the location management module of the system management
meta-level service illustrated in Figure 2. The location man-
agement meta-level service observes and stores user loca-
tions and mobility patterns with the given sampling period
(by using updateUserLocation() function), and provides the
predicted information with predictUserLocation() and pre-
dictTraffic() meta-level functions.
The key input parameter of the PBCA is the predicted

user location which is calculated based on the history of
the sampled user locations. In the next section, we explore
the various kinds of methods to predict user locations for a
location information management meta-level service in the
aspects of the correctness of the predicted information and
the impacts of the misprediction to the other meta-level ser-
vices including PBCA service and GeoAlert meta-level ser-
vice (customized location based alerting service).

4. A BASIC META-LEVEL SERVICE : LO-
CATION INFORMATION MANAGEMENT

Collection and observation of base level data is a core as-
pect of any reflective system. This is illustrated in the RCA

meta-model (Figure 2) where the system/data management
module is a basic meta-level service. The granularity and
frequency of observation and information interchange often
dictate the quality of the captured data and consequently
the efficacy of adaptations in a reflective framework. In
this section, we address some issues in adaptive capture and
management of the observed data. In a general sense, this
involves capturing (or evaluating) the observable data at dif-
ferent levels of granularity (coarse and fine) and in different
time domains (past, current and future). Using location re-
lated information of mobile hosts as a base-level observable
parameter; we develop and evaluate techniques for predict-
ing location information at different levels of granularity -
using reified information already captured in the RCA. Our
choice of location data is based on the fact that the deploy-
ment of cellular services and their quality is inherently dic-
tated by the location of MH’s and BS’s. At a coarse level, we
model location information as cell occupancy, i.e. number of
hosts in a cell. Knowledge of current and future occupancy
is useful in estimating the distribution of required network
resources in each cell. At a fine grained level, we capture
the accurate location information of individual hosts - this
is useful for a variety of user oriented services.

There are two main categories of prediction methods: es-
timation from the network view point and estimation based
on individual behavior. Estimation from the network view is
usually based on statistical models and characterizations of
spatiotemporally distributed traffic (e.g. highway vs. down-
town models) [15]. The result of such estimation is typically
used in an early phase of network design and planning us-



ing which actual deployment is carried out (e.g. allow the
network to support relatively more cell phones in downtown
than in rural areas). While the estimation from the net-
work view predicts the longer term occupancy of a cell, the
estimation based on individual behavior predicts the near
future aggregate occupancy of a cell by collecting and pro-
cessing individual users’ location (supported by any local-
ization techniques such as GPS) and trajectory information
across regions [18, 14]. Since the purpose of RCA is sup-
porting dynamic adaptation with continuous observation of
base-level data, we need a meta-level service providing near
future prediction of coarse/fine level location information
rather than long-term prediction.

4.1 Coarse grained level information : Cell
occupancy prediction

Cell occupancy is a coarse metric of location information
in a cellular network. We propose two simple methods of
occupancy prediction to estimate the number of devices in a
given cell at a certain future time : coarse non-individualized
occupancy prediction (CNOP) and coarse individualized oc-
cupancy prediction (CIOP). In CNOP, each BS reports a
time series of its occupancy over time, i.e., the number of
cell phones connected to it in successive time sampling in-
stants. Such a method may seem naive, but its performance
should be considered before more elaborate techniques are
devised. Intuitively, if prediction is short-term, the occu-
pancy of each cell is expected to change by only a small
amount, due to inertia of mobile hosts: it is fairly improb-
able that the stochastic entry/exit of hosts into the cell
will disturb the aggregate number of hosts by a significant
amount. On the other hand, in CIOP, each BS gathers the
information of individual users such as which users are cur-
rently in its range, when they entered the current cell, which
neighboring cell they are from and how long they stayed in
the previous serving cell. Assume the users will spend the
same amount of time t in the current cell as they spent in the
previous serving cell. We further associate specific probabil-
ities to the neighboring cells to indicate the likelihood that
the user may enter that cell, and calculate the aggregate oc-
cupancy prediction within 2t (t in the current cell and t in
the next cell). Note that different probabilities can be ap-
plied to different geographic conditions and under different
user mobility patterns.
To evaluate the two methods, we simulated mobile hosts

on an 11x11 grid of cells, each of which has an internal di-
ameter of 2000m. Cell phones are initially placed randomly
in space (uniformly), choose a random destination point in
the space as the destination, and a random velocity from in-
terval [vmin, vmax] and proceed to the destination with that
speed; the process is then repeated (after arrival at the desti-
nation) until the simulation time is over. We have simulated
this process varying the number of cell phones in the entire
space ranging in 500, 2000, 8000, average velocity vmin from
3, 5, 8, 10 with vmax = vmin + 4 (in m/s). Simulation time
was 60min, with occupancy samples obtained every 1min for
the ground truth. We assessed the efficacy of our technique
by varying the lookahead time tpred, defined as the num-
ber of minutes in advance that prediction is required. We
plot the occupancy prediction error defined as the average
absolute occupancy error divided by the average cell occu-
pancy. For example, if average absolute occupancy error is
8 (cell phones), and there are in total 8000 cell phones, the

prediction error is 8/(8000/121) = 0.121.
The results plot prediction error against the lookahead

time and against the average speed (defined as (vmin +
vmax)/2). Results are shown in Figure 4. The main con-
clusion from these results is that even the simple method,
CNOP, suffices to provide reasonably accurate occupancy
prediction in the short term. Basically, the accuracy of oc-
cupancy prediction decreases as both of the lookahead time
and the speed of cell phones increase. But, as the load on the
system (measured by the number of cell phones) increases,
the accuracy of our methods increases. Intuitively, with few
cell phones, a small number of cell phones moving across cell
boundaries has a substantial effect on prediction error, but
this becomes less important as cells become crowded with
cell phones.

4.2 Fine grained level information : Individu-
alized location prediction

Individualized location is a fine metric of location informa-
tion which is useful for a variety of applications that can not
rely on the coarse location information and desire to control
more customized services. For instance, resource reserva-
tion is important for the cellular system to provide consis-
tent services with quality guarantees. In order to enable
such reservations while optimally utilizing system resource,
it is imperative that the location of individual cell phones is
known precisely (and in advance), so that resources are re-
served and released promptly, in tandem with the cell phones
motion across different cells. For the purposes of near-term
prediction of individualized location of a cell phone, iner-
tial prediction may suffice, which assumes that objects will
maintain their current velocity vector into the near future. It
can be easily seen that this model approximates many types
of ordinary human behavior, such as sitting, walking or driv-
ing purposefully. In this motion model, each cell phone may
capture its own location (e.g., using assisted GPS) period-
ically, estimate its speed, and transmit a vector of param-
eters (x0, y0, vx, vy) to the appropriate cellular network
location monitoring service, which can then extrapolate the
cell phone’s location into the future. We have implemented a
version of this Inertial Vector Based Method (IVBM), which
estimates the velocity vector from the last two location fixes,
and can be parameterized to sample location at a given pe-
riod t. We have also implemented a simpler model which
estimates a cell phone’s location as its last known location;
in this model, only (x0, y0) needs to be transmitted. This
Last Position Based Model (LPBM) is conceptually simpler,
and is expected to perform reasonably well for near-term
prediction, since objects cannot move by a great amount in
a short period of time; LPBM is also expected to perform
well for slow moving objects (corresponding to e.g., office
workers, or pedestrian shoppers).

As per our discussion above, we are sometimes interested
in predicting individual location to facilitate individualized
resource reservation. The time series of predicted location
can be used to reserve/release resources in advance for the
user’s applications in different cells. Thus, a measure of
the quality of prediction can be defined as the fraction of
wrong predictions over all predictions, i.e., the times that
the cell phone is estimated to be in the wrong cell (leading
to wasted resources in that cell, and missing resources in
the cell where the cell phone actually is located). We call
this, the location misprediction rate. In our experiments,
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Figure 4: Performance of occupancy prediction methods (CNOP and CIOP).
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Figure 5: Performance of individualized location prediction methods (IVBM and LPBM).

we have maintained the same settings for cellular network
layout, cell size as the setting of the evaluation of occupancy
prediction. We fix the number of users to be 2000. We
varied object velocity as before, but rather than using an
origin-destination model with constant speed (which would
be ideal for motion prediction), we allowed objects to change
their velocity at each simulation step by a small amount
(uniformly chosen between −vmin/5 to +vmin/5), as well as
their direction of motion by a small angle (between −dθ and
+dθ). We varied dθ between π/32, π/16, π/8. We have also
varied the sampling period τ in 1, 2, 3, 4 min. The number of
messages and localization samples is inversely proportional
to τ . Results are averaged over all choices for the parameter
which is not plotted, e.g., lookahead time tpred, dθ and vmin

in the error vs. τ plot. Finally, we added uniform error of
U[0,50] m to the location fixed provided by the individual
localization service (e.g., GPS).
The results are plotted in Figure 5; each plot shows the

cell misprediction rate against the free parameter. As ex-
pected, this rate increases as motion volatility increases (Fig-
ure 5(a)), as prediction lookahead time increases (Figure
5(b)), as samples are obtained less frequently (Figure 5(c)),
and as the average speed of cell phones increases (Figure
5(d)). Moreover, in all cases, the smarter method, IVBM,
outperforms the simpler method, LPBM. The efficacy of this
solution could be further enhanced, e.g., by taking into ac-
count road network structure which would supply informa-
tion for directional motion changes that cannot be captured
by a uniform motion model. But, nonetheless, our results
indicate that even a simple predictive model based on con-
stant motion is capable of localizing mobile hosts within cells
to a substantial degree.

4.3 Utilizing the location prediction meta-level
service

The prediction of coarse/fine-grained level location infor-
mation can be illustrated as a meta-level service such as
analysis tasks module in Figure 2, and other meta-level ser-
vices (e.g. radio resource allocation, customized dissemina-
tion) can use this predicted location information by using
meta-level functions such as predictUserLocation() or pre-
dictLocation() in Figure 3. These meta-level services rely
on the predicted location information provided by the loca-
tion management meta-level service, and the misprediction
of location information may affect their performance signifi-
cantly. We evaluate the impact of misprediction of location
information to two meta-level services : the radio resource
allocation service and customized dissemination service.

Radio Resource Allocation : In the PBCA, Mispredic-
tion of location information causes that a BS allocates over
or under estimated channel resource, and the performance
of PBCA may decreases. We evaluated the performance
degradation through ns2-based simulations for cellular net-
works with 350 channels in a cell. The detailed settings are
found in the paper [17]. Figure 6(a) and 6(b) show the im-
pact of misprediction in terms of performance improvement
of PBCA over LP-DDCA (one of distributed DCA schemes)
in a highway scenario and a stadium scenario. Basically,
PBCA achieves better performance in a stadium scenario,
where a hotspot cell has more non-hotspot neighboring cells,
than in a highway scenario. According to this, the impact of
the misprediction to a stadium scenario becomes significant,
and PBCA for the stadium scenario requires more accurate
predicted location information which may cause the cost of
collection and maintenance of individualized location infor-
mation. On the other hand, PBCA in a highway scenario
is more tolerant against the low/mid level of misprediction,
and the coarse grained prediction of location information is
enough to support the highway scenario.

Customized Dissemination : The predicted location
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Figure 6: Impact of misprediction of location information to other meta-level services.

information can be applied to implement and customize spa-
tiotemporal services. Dissemination information, especially
during a crisis situation, may be dependent on user loca-
tions, which may dictate the urgency or the content [8].
GeoAlert, a customized spatiotemporal service, is a regional
multicasting service to inform a message to all of the re-
cipients who locate inside a given geographical region (e.g.
send accurate evacuation paths to users in a specific region
affected by a crisis urgently). GeoAlert filters the target
recipients of a regional multicasting message based on the
predicted location information. The predicted location in-
formation is important for GeoAlert in order to reach the
users possible affected by the event in near future.
With misprediction of location information, GeoAlert suf-

fers from false negatives. False negatives means the case that
a node, locating inside of the given target region of a mes-
sage, does not get the message. These false negatives should
be minimized. We simulated GeoAlert with 10000 recipients
which are uniformly distributed over a 10000m by 10000m
global target region. We assume that GeoAlert guarantees
that a regional multicasting works correctly based on the
predicted location information. The size of a target region
of a message is smaller than the size of the global target re-
gion. In Figure 6(c), the number of false negative nodes in-
creases logarithmically as the target region increases. How-
ever, since the number of target recipients is proportional
to the size of the target region, the ratio of false negative
decreases exponentially as the size of target region increases
like Figure 6(d). According to this, we note that more accu-
rate prediction of location information is required in order
to support more fine-granularity of customized information
dissemination reliably.

5. CONCLUDING REMARKS
Developing protocols for extended services such as reliable

messaging, timely and secure communication in an RCA will
require support for extended compositionality. The use of
reflective architectures in designing various communication
networks has been proposed in recent works [13, 5]. While
this paper presents a reflective framework for a specific net-
work (i.e. cellular network), our eventual goal is to develop a
reflective multi-network architecture that will enable seam-
less exchange of information across multiple access networks.
For instance, the cellular system can be combined with other
network such as adhoc network to support users’ desired
quality of services [3] in order to support various kinds of
users’ QoS efficiently and effectively.
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